

10th International Conference on Information and Knowledge Technology (IKT 2019)

1

Parallel Rabin-Karp Algorithm for String Matching

using GPU

Masoumeh Moeini

School of Electrical Engineering

Iran University of Science and Technology

Tehran, Iran

m_moeini@elec.iust.ac.ir

Hadi Shahriar Shahhoseini

School of Electrical Engineering

Iran University of Science and Technology

 Tehran, Iran

shahhoseini@iust.ac.ir

Abstract— String matching algorithms play an important role in

many aspects. In this paper, a new method is proposed for parallel

execution of Rabin-Karp string matching algorithm. In the

proposed method, all patterns are divided into different groups.

This categorization has been used to prevent redundant

comparisons and accelerate the matching process. This procedure

takes two advantages: a reduction in the number of comparisons

of hash values and a decline in the number of pattern reading from

global memory. It is recommended to implement the algorithm in

various cases on NVIDIA GPUs using CUDA Platform to

demonstrate the efficiency of the proposed algorithm.

Experimental results depict that the execution time of the

algorithm has decreased significantly. In the best case, the

proposed method is approximately 27 times faster than the series

mode.
Keywords-String Matching Algorithm; Rabin-Karp Algorithm;

GPU; Categorization

I. INTRODUCTION

The rapid growth of computer networks and the Internet and
its numerous applications results in producing massive data in
many applications. In these big data environments many
challenges have been appeared, among them searching is ones
of the most important one and high-speed string matching
algorithms are the core of the solution. String matching has been
widely used in many real-world applications including
biological signal processing [1,2], network processing [3], task
scheduling [4,5], pattern matching [6,7] and intrusion detection
system [8-10]. The process of string matching is a way of finding
a particular string pattern from a large volume of text. Currently,
most applications use the concept of string matching to retrieve
data or to match patterns with a large amount of data. Generally,
the process of string matching finds all the occurrences of a
pattern 𝑥=[𝑥0𝑥1𝑥2…𝑥𝑚−1]; 𝑥𝑖∈Σ;𝑖=0,1,2,…𝑚−1, in a text of
𝑦=[𝑦0𝑦1𝑦2…𝑦𝑛−1]; 𝑦𝑗∈Σ;𝑗=0,1,2,…,𝑛−1.

It is so crucial to perform the process of string matching in a
specified time. Nowadays, one of the best solutions to accelerate
any time consuming process is parallel processing. However, it
is necessary to modify the process based on the capabilities of
the used parallel computing platform. There are various
structures of parallel processing, each with its advantages and
disadvantages [11]. Our goal is to implement parallel processing

in the graphical processing unit (GPU) [12]. There are some
important string matching algorithms like Rabin-Karp [13],
Aho-Corasick [14], Boyer Moore [15] and KMP [16], which are
already executed in parallel. The implementation of Aho-
Corasick algorithm on the GPU [17] has led to DPAC [18]
method although there were some drawbacks. When the data is
split into different parts, each one is given to the processor and
each of these processors works separately; hence, there is a
problem on the boundaries where a pattern might be potentially
placed on two contiguous parts [19]. Moreover, they proposed
another method that eliminates the invalid transfer and each
processor is only responsible for processing its associated
information. The DPAC and KMP algorithms have been
efficiently paralleled and implemented on GPUs, obtaining
significant speedups [20-21]. In addition, one of the most
important algorithms that is implemented on a GPU is Boyer
Moore algorithm. This algorithm has been taken into
consideration due to its very high speed. The method of
parallelism the Boyer-Moore algorithm is based on the division
of data into several parts and giving them to parallel processors
[22]. Furthermore, Dayarathne and Ragel has paralleled Rabin-
Karp algorithm to implement the DNA finder sequence on
NVIDIA GPUs by CUDA platform [23]. Additionally, Sharma
and Singh implemented Rabin-Karp algorithm on GPUs for
deep packet inspection and then use shared memory to optimize
the use of memory bandwidth [24].

Our proposed method is based on the fact that it is not
necessary to compare all patterns. To reduce the number of
comparisons, we proposed a method for categorizing patterns
which aims to a reduction in the total computational time.

The following sections are organized as follows; section II
gives a survey on GPU architecture. Section III provides a
detailed view of the basic method of Rabin-Karp algorithm.
Section IV introduces the proposed algorithm. In section V, we
provide the result and discussion for the proposed algorithm.
Section VI contains the conclusion.

II. GPU ARCHITECTURE

In recent years, the graphics processing unit (GPU) has
emerged as a powerful computation device. The use of general
purpose graphics processors (GPGPUs) has grown and has

mailto:m_moeini@elec.iust.ac.ir

10th International Conference on Information and Knowledge Technology (IKT 2019)

2

become more common. GPUs can provide great performance at
very low prices, while they can be used in high-performance
computing systems without much trouble [25]. These types of
graphics processing units, instead of those designed exclusively
for graphic operations, use the computational power of a modern
graphic shader to compute many parallel tasks such as ray
tracing, computational fluid dynamics, and climate modeling.
Generally, this tool is used for computers requiring high
computing power, since GPUs have high parallelism due to their
special architecture. The general purpose of using the GPU in
these cases is that a specific program is broken into several small
sections and then executed in parallel. It is worth mentioning that
only programs that are inherently data parallel can have a profit
of this technology.

NVIDIA (2010) developed a software platform named
compute unified device architecture (CUDA), which allows
almost the direct translation of C code onto the GPU [26].
CUDA is a powerful computing engine (processing) of NVIDIA
graphics cards, that allows software developers to use a CUDA-
enabled GPU for processing purposes.

CUDA gives developers a direct access to memory and
instruction set in the graphical processing units. The GPU has
several multiprocessor cores, each multiprocessor runs a single
instruction, with multiple data known as SIMD programming
model that run by CUDA. It enables us to implement the massive
data programs on GPU. The hierarchical structure of memory in
GPU is shown in Fig. 1. It is notable that the GPU memory
bandwidth is higher than CPU. In CUDA, the function of a
program must be written as a kernel.

III. THE BASIC RABIN-KARP ALGORITHM

The main idea of Rabin-Karp algorithm for implementing on
GPU is to select a window of input data string and give it to
different threads in the GPU. This method is shown in Fig. 2.

Figure 1. Hierarchical structure of GPU memory [27]

Figure 2. The basic method of Rabin-Karp algorithm

As can be seen, a window with the length of pattern (m) is
selected from the beginning of the input data and also other
windows are chosen in the same way. Each window is allocated
to one thread. Then, these threads perform the pattern matching
algorithm independently. First, the hash value of the pattern and
all windows are calculated. Next, the hash value of each window
is compared with the hash value of the pattern. If these values
are the same, the verification process is performed by using
Brute-Force algorithm. The number of nodes in the basic Rabin-
Karp algorithm is n-m and the size of input data string is n.

There are various strategies to optimize the implementation
of the basic Rabin-Karp algorithm. The GPU has various types
of memory, so a solution can be using shared memory and
transferring the data window to the shared memory. In this case,
once the selected data is read from the global memory, it is
transferred to the shared memory. This strategy has some
disadvantages. It would be useful only when the memory is used
for several times; otherwise an overhead of transferring data is
imposed to the whole process. Therefore, using shared memory
is reasonable only when the number of patterns in the input data
string is very large.

IV. THE PROPOSED METHOD FOR IMPROVING PARALLELISM

IN BASIC RABIN-KARP ALGORITHM

In order to improve the performance of basic Rabin-Karp
algorithm, the main idea employed in this paper, is to split the
input data and then dedicate it to parallel processors.
Nevertheless, the basic method calculates the hash values of the
input data windows and the pattern. Subsequently, the hash
value of a pattern is compared with the hash values of the
windows. It can need extra time, reducing the overall
performance. If you can reduce the number of comparisons, then
output performance will increase. According to the above, the
Rabin-Karp algorithm is beneficial in case of multi-pattern
matching.

Thus, in order to reduce the system response time, we
proposed a pattern grouping method that it reduces the number
of comparisons between the hash values. The categorization
method is based on the first letter of the patterns; that is, the
patterns starting with a same letter put into a same class. All
patterns starting with "A", for example, establish the group "A".
Other patterns also follow this rule. In addition, we make a slight
change to the Rabin-Karp algorithm to select the desired group;
that is, the selection of the group is based on the first letter of
each window.

10th International Conference on Information and Knowledge Technology (IKT 2019)

3

Therefore, the main trend of the proposed Rabin-Karp
algorithm is the use of pattern categorization. First, a group is
selected based on the first letter of the window. Next, the hash
value of the window is compared with the hash values of the
patterns fallen into the associated group. As a result, it is not
necessary to compare with all of the patterns, which leads to a
significant reduction in the number of comparisons in the Rabin-
Karp algorithm; consequently, more performance can be
expected. Additionally, the pattern categorization method takes
another advantage. Since fewer patterns are compared in pattern
categorization method, fewer memory calls will happen and
consequently the number of memory access operations will be
reduced. As a result, the memory access constraint can be
relaxed by the proposed method. The pattern categorization is
shown in the Fig. 3. The point should be taken into consideration
that the selection of the desired group leads to an extra overhead
to the process; however, two benefits can be acquired: a drop in
the number of comparisons and the memory read operations.

V. EXPERIMENTAL RESULTS

Before describing different modes of implementations used
in this research, we offer the hardware requirements. To run the
series mode, the Rabin-Karp algorithm was implemented by the
C++ programming language; furthermore, the parallel Rabin-
Karp algorithm was implemented by CUDA platform. The
central processing unit used in this implementation is Intel Core
i7. In addition, we used the NVIDIA GeForce GT 630 graphics
processing unit. To prove the efficiency of the proposed
algorithm in different aspects, three schemes have been used
based on the input data string and pattern properties. The first
one is to increase the input data size. As GPUs are a kind of
SIMD (single instruction multiple data) processors that run an
instruction on a large number of data, by increasing the input
data size, the level of parallelism will increase. The second one
is changing the number of patterns. Due to the different
applications, the number of patterns can be different. For
example, in the intrusion detection system, the number of
patterns is very high and is constantly growing. So, we need to
reach an acceptable performance in this system. Therefore, we
examine the increasing or decreasing in the number of patterns
when running the Rabin-Karp algorithm. The third one is to
increase the length of the pattern. In different applications, the
length of the patterns may vary.

Figure 3. Patterns categorization in the proposed method

Table 1. The execution time of the Rabin-Karp algorithm for different sizes of

input data

Input data

(B)

Execution time (ms)

The series mode
The basic

method

The proposed

method

10240 7 1.51 0.54

20480 14 2.93 1.08

40960 29 5.81 2.06

61440 44 8.69 3.1

Figure 4. The execution time of the parallel implementations of the Rabin-

Karp algorithm on GPU for different sizes of input data

Figure 5. The speed up rate of the proposed method over the basic method for

different sizes of input data

A. Different sizes of input data

In this case, the length of the pattern is 4 bytes and the
number of patterns is 260. The results of this implementation are
listed in Table 1. In addition, the results of execution time and
speedup rate are respectively shown in Fig. 4 and Fig. 5. It can
be observed that the proposed method is approximately up to 14
times faster than the series mode. Moreover, in terms of
execution time, the proposed method is superior than the basic
method for different sizes of input data.

B. Different numbers of patterns

In this case, the length of the pattern is 4 bytes and the size
of the input data is 40960 B. The results acquired by this
implementation are presented in Table 2. In addition, the results
of execution time and speedup rate are respectively shown in
Fig. 6 and Fig. 7. It can be observed that the proposed method
is approximately up to 27 times faster than the series mode.

10th International Conference on Information and Knowledge Technology (IKT 2019)

4

This case evidently reveals the main advantage of the
proposed method for improving the Rabin-Karp algorithm. As
can be observed in Table 2, by increasing the number of patterns,
the execution time of the proposed method stays almost constant
while the execution time of the basic one linearly rises. As a
consequence, the speed up of our method over the basic one is
approximately proportional to the number of patterns (Fig. 7).
Consequently, increasing the number of patterns will make our
method more efficient and interesting to use. This superiority is
due to the fact that in the proposed categorization method all new
patterns are divided among different groups, so only a few of the
new patterns are compared.

As noted above, there are many patterns in the intrusion
detection systems and also their number are increasing; thus, the
proposed method is so useful in these systems.

C. Different lengths of patterns

In this case, the number of patterns is 260 and the size of the
input data is 40960 B. Table 3 depicts the execution time of the
parallel implementations of the Rabin-Karp algorithm on GPU
for different lengths of patterns. In addition, the results of
execution time and speedup rate are respectively shown in
Fig. 8 and Fig. 9. It can be observed that the proposed method

Table 2. The execution time of the parallel implementations of the Rabin-Karp

algorithm on GPU for different numbers of patterns

Number of

patterns

Implementation time (ms)

The series

mode

The basic

method

The proposed

method

260 29 5.81 2.06

312 35 6.65 2.06

442 49 8.71 2.08

520 57 9.98 2.09

Fig. 6. The execution time of the parallel implementations of the Rabin-Karp

algorithm on GPU for different numbers of patterns

Fig. 7. The speed up rate of the proposed method over the basic method for

different numbers of patterns

for parallelism of the Rabin-Karp algorithm is approximately up
to 14.5 times faster than the series mode.
In different applications, the pattern length can vary depending
on their protocols. Therefore, the proposed method should be
checked for different cases. It can be seen that with an increase
in the average length of patterns, the speedup rate increases
slightly, and this is not very significant because with the pattern's
length increasing, the matching time of both basic and proposed
algorithm rises. Hence, we can not expect an increase in the
speedup rate for this situation. It can be said that the change in
the length of the pattern does not have a significant impact on
the speedup rate of the proposed method versus the basic method
of the Rabin-Karp algorithm.

D. Thread variation

Thread is the smallest part of a parallel program on GPUs.
NVIDIA recommends that the threads should be properly
defined to utilize the maximum computational power of a GPU.

To optimize a CUDA program, it is essential to establish an
optimum balance between the number of blocks and their
size.More threads per block will be useful in masking the latency
of the memory operations, at the same time, the number of
registers available per thread is reduced. So, NVIDIA advises
using blocks of 128 to 256 threads, which offers the best tradeoff
between masking latency and the number of registers needed for
most kernels. This point is investigated in the proposed method.
The results for different sizes of input data and different numbers
of threads are shown in Table 4. As can be seen, the results listed
in the table show the validity of NVIDIA's recommendation.

Table 3. The execution time of the parallel implementations of the Rabin-Karp

algorithm on GPU for different lengths of patterns

Length of

patterns

(B)

Implementation time (ms)

The series

mode

The basic

method

The proposed

method

4 29 5.81 2.06

8 29.5 5.15 2.03

16 30.5 5.45 2.16

10th International Conference on Information and Knowledge Technology (IKT 2019)

5

Fig. 8. The execution time of the parallel implementations of the Rabin-Karp

algorithm on GPU for different lengths of patterns

Fig. 9. The speed up rate of the proposed method over the basic method for

different lengths of patterns

VI. CONCLUSION

Rabin-Karp algorithm is one of the pattern matching
algorithms that can be used in both single-mode matching
algorithms and multiple matching algorithms. It is a fact that the
execution time of the algorithm plays an important role in some
security applications, such as the intrusion detection system. The
most important and cost-effective way to accelerate the pattern
matching process in today's world is to use parallel processing
and implementing on GPU. In this paper, a pattern
categorization method was proposed for parallel implementation
of the pattern matching process in the Rabin-Karp algorithm.
The proposed method was implemented on GeForce GT 630 for
different scenarios to be comprehensively verified. The
experimental results demonstrated the efficiency and superiority

Table 4. The execution time of proposed algorithm for different sizes of input
data and different numbers of threads

Input

data (B)

Implementation time (ms)

128

threads

256

threads

512

threads

1024

threads

10240 0.53 0.54 0.54 0.54

20480 0.98 0.99 1.01 1.08

40960 1.92 1.93 1.92 2.06

61440 2.82 2.88 2.86 3.1

of the proposed method compared to the basic one, especially in
case of applications with a large number of patterns.

REFERENCES

[1] P. Rastogi and R. Guddeti, “GPU accelerated inexact matching for
multiple patterns in DNA sequences,” International Conference Advances
in Computing on Communications and Informatics (ICACCI), pp. 163-
167, 2014.

[2] D.R.V.L.B Thambawita, R. G. Ragel and D. Elkaduwe, “An optimized
parallel failure-less Aho-Corasick algorithm for DNA sequence
matching,” 2016 IEEE International Conference on Information and
Automation for Sustainability (ICIAfS), 2016.

[3] H. Naderi, H. S. Shahhoseini, A. H. Jafari, “Evaluation MCDM multi-
disjoint paths selection algorithms using fuzzy-copeland ranking
method,” International Journal of Communication Networks and
Information Security, Vol. 5, No. 1, pp. 59-67, 2013.

[4] M. M. Bassiri, H. S. Shahhoseini, “Configuration reusing in on-line task
scheduling for reconfigurable computing systems, ” Journal of Computer
Science and Technology Vol. 26, No. 3, pp. 463-473, 2011.

[5] M. M. Bassiri, H. S. Shahhoseini, “A new approach in on-line task
scheduling for reconfigurable computing systems,” Proceedings of the
International Conference on Application-Specific Systems, Architectures
and Processors, pp. 321-324, 2010.

[6] A. Tabatabaei, M. R. Mosavi, A. Khavari, H. S. Shahhoseini, “Reliable
urban Canyon navigation solution in GPS and GLONASS integrated
receiver using improved Fuzzy weighted Least-Square method,” Wireless
Personal Communications Vol. 94, No. 4, pp. 3181-3196, 2017.

[7] H. J. Rad, M. Azarafrooz, H. S. Shahhoseini, B. A. Abolhassani, “New
adaptive power optimization scheme for target tracking wireless sensor
networks,” 2009 IEEE Symposium on Industrial Electronics and
Applications, ISIEA 2009.

[8] B. M. Bidgoli, M. Analoui, M. H. Rezvani, H. S. Shahhoseini,
“Performance evaluation of decision tree for intrusion detection using
reduced feature spaces,” Trends in Intelligent Systems and Computer
Engineering, 2008 Lecture Notes in Electrical Engineering, Vol. 6, pp.
273-284 Springer, 2008.

[9] M. Saeed, H. S. Shahhoseini, “APPMA - An Anti-phishing protocol with
mutual authentication,” Proceedings - 2010 IEEE Symposium on
Computers and Communications, pp. 308-313, 2010.

[10] T. AbuHmed, A. Mohaisen, and D. Nyang, “Deep packet inspection for
intrusion detection systems: A survey,” Magazine of Korea
Telecommunication Society, Vol. 24, pp. 25-36, 2007.

[11] H. S. Shahhoseini, M. Naderi, R. Buyya, “Shared memory multistage
clustering structure, an efficient structure for massively parallel
processing systems,” Proceedings of the 4th International Conference on
High Performance Computing in the Asia-Pacific Region, 2000, Beijing.

[12] C. S. Kouzinopoulos and K. G. Margaritis, “String matching on a
multicore GPU using CUDA,” In 13th Panhellenic Conference on
Informatics, ser. PCI '09.IEEE, pp. 14-18, Sep. 2009.

[13] R. M. Karp and M. O. Rabin, “Efficient randomized pattern-matching
algorithms,” IBM J. Res. Dev., Vol. 31, No. 2, pp. 249–260, 1987.

[14] A. V. Aho and M. J. Corasick, “Efficient string matching: An aid to
bibliographic search,” Commun. ACM, Vol. 18, No. 6, pp. 333–340, Jun.
1975.

[15] R. S. Boyer and J. S. Moore, “A fast string searching algorithm,”
Commun. ACM, Vol. 20, No. 10, pp. 762–772, 1977.

[16] D. E. Knuth, J. H. Morris, and V. R. Pratt, “Fast pattern matching in
strings,” SIAM J. Comput., Vol. 6, No. 2, pp. 323–350, Jun. 1977.

[17] A. Tumeo, O. Villa, and D. Sciuto, “Efficient pattern matching on GPUs
for intrusion detection systems,” Proc. Seventh ACM Int’l Conf.
Computing Frontiers, 2010.

[18] P. R. Jelenkovic, X. Kang and A. Radovanovic, “Near optimality of the
discrete persistent access caching algorithm,” DMTCS proc. AD, pp.
201–222, 2005.

https://ieeexplore.ieee.org/xpl/conhome/7939934/proceeding
https://ieeexplore.ieee.org/xpl/conhome/7939934/proceeding

10th International Conference on Information and Knowledge Technology (IKT 2019)

6

[19] C. H. Lin, C. H. Liu, L. S. Chien, S. C. Chang, “Accelerating pattern
matching using a novel parallel algorithm on GPUs,” IEEE Transactions
On Computers, Vol. 62, No. 10, october. 2013.

[20] C. H. Lin, S. Y. Tsai, C. H. Liu, S. C. Chang, and J. M. Shyu,
“Accelerating string matching using multi-threaded algorithm on gpu,” In
Proceedings On IEEE Global Telecommunications Conference
(GLOBECOM 2010), pp. 1–5, 2010.

[21] A. Rasool and N. Khare, “Parallelization of KMP string matching
algorithm on different SIMD architectures: multi-core and GPGPU’s,”
Int. J. Comput. Appl., Vol. 49, No. 11, pp. 26–28, 2012.

[22] X. Zha and S. Sahni, “GPU-to-GPU and Host-to-Host multipattern string
matching on a GPU,” IEEE Transaction On Computer, Vol. 62, No. 6, pp.
1156–1169, 2013.

[23] N. Dayarathne and R. Ragel, “ Accelerating Rabin Karp on a Graphics
Processing Unit (GPU) using Compute Unified Device Architecture
(CUDA),” Proceeding in International Conference on Information and
Automation for Sustainability (ICIAfS), pp. 1–6, 2014.

[24] J. Sharma and M. Singh, “CUDA based Rabin-Karp pattern matching for
deep packet inspection on a multicore GPU,” International Journal
Computer Network and Information Security, Vol. 10, pp. 70-77, 2015.

[25] Y. Tan and K. Ding, “A survey on GPU-based implementation of Swarm
intelligence algorithms,” IEEE Transactions on Cybernetics, Vol. 46, No.
9, Sept. 2016.

[26] NVIDIA Corporation, “NVIDIA CUDA C programming guide,” Sep.
2015, pG-02829-001_v7.5.

[27] CUDA NVIDIA, “NVIDIA CUDA programming guide,” (version 1.0),
NVIDIA: Santa Clara, CA (2007).

https://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=6221036
https://ieeexplore.ieee.org/xpl/tocresult.jsp?isnumber=7542212
https://ieeexplore.ieee.org/xpl/tocresult.jsp?isnumber=7542212

