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ABSTRACT 
 

The primary objective of this paper is to propose a novel technique for hybridizing various 

metaheuristic algorithms to optimize the size of discrete structures. To accomplish this goal, 

two well-known metaheuristic algorithms, particle swarm optimization (PSO) and enhanced 

colliding bodies optimization (ECBO) are hybridized to propose a new algorithm called 

hybrid PSO-ECBO (HPE) algorithm. The performance of the new HPE algorithm is 

investigated in solving the challenging structural optimization problems of discrete steel 

trusses and an improvement in results has been achieved. The numerical results demonstrate 

the superiority of the proposed HPE algorithm over the original versions of PSO, ECBO, 

and some other algorithms in the literature. 
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1. INTRODUCTION 
 

Over the past decade, various optimization algorithms have been extensively used to solve 

structural optimization problems. Studies indicate that gradient-based algorithms are not 

suitable for optimal design of structures due to their limitations. [1]. On the other hand, 

metaheuristics use the random exploration of design space and this makes them more 

powerful and efficient in solving structural optimization problems, compared to gradient-

based ones [2]. It is not necessary for them to have any prior knowledge about the design 

space or the optimization problem [3]. In recent years, several nature-inspired metaheuristics 

have been developed, such as simulated annealing [4], genetic algorithms [5], and bacterial 

foraging [6]. There are other algorithms inspired by social interactions, such as the particle 

swarm algorithm [7, 8] and ant colonies [9], as well as some inspired by physical laws, such 
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as the colliding bodies algorithm [10]. Upon closer inspection, it becomes evident that not 

all structural optimization algorithms are equally effective in addressing all structural 

optimization problems. The No Free Lunch Theorem [11] states that no metaheuristic can 

perfectly solve all types of optimization problems. Proposing and improving metaheuristic 

algorithms with different computational strategies to tackle different classes of optimization 

problems is an active area of research [12-16]. 

The current study proposes a new and efficient approach to tackle discrete structural 

optimization problems. Instead of introducing a new metaheuristic algorithm, the approach 

hybridizes two well-known existing algorithms, namely Particle Swarm Optimization (PSO) 

[7] and Enhanced Colliding Bodies Optimization (ECBO) [17]. The newly proposed 

metaheuristic algorithm is known as the Hybrid PSO-ECBO (HPE) algorithm. The proposed 

HPE is a parallel implementation combining both algorithms' benefits without increasing 

computational cost. To evaluate the effectiveness of the proposed HPE metaheuristic, the 

steel truss structure optimization problems are considered. The numerical results indicate 

that HPE outperforms other algorithms in terms of convergence rate and final solutions. 

 

 

2. PARTICLE SWARM OPTIMIZATION 
 

The PSO algorithm, first proposed by Kennedy and Eberhart [7], is a stochastic algorithm 

inspired by the social behavior of birds. PSO is an iterative approach to finding optimal 

solutions for optimization problems, similar to other metaheuristic algorithms. The iteration 

starts by generating random solutions. These solutions are then updated using a formulation 

that incorporates current position vectors and velocity vectors of the next stage. The velocity 

vector of the next stage has three components: the velocity vector of the current stage, an 

updating vector towards the personal best, and an updating vector towards the global best. It 

should be noted that these three elements are weighted by some coefficients that are named 

as the importance factors and must be adjusted to solve a specific optimization problem. The 

formulation is as follows: 

 

 𝑋𝑖+1
𝑗

=𝑋𝑖
𝑗

+ 𝑉𝑖+1
𝑗

 (1) 

 

where, X and V are the position and velocity vectors, respectively; i refers to iteration 

number and j is the index of individual solution candidates. In Eq. (1), the velocity of the 

next stage 𝑉𝑖+1
𝑗

 is calculated as follows:  

 

𝑉𝑖+1
𝑗

= 𝜔𝑉𝑖
𝑗

+ 𝐶1𝑟1(𝑃𝑏
𝑗

− 𝑋𝑖
𝑗
) + 𝐶2𝑟2(𝑃𝑔

𝑗
− 𝑋𝑖

𝑗
) (2) 

 

where 𝐶1 and 𝐶2 are self-confidence and global-confidence coefficients respectively; 𝜔 is 

the inertial weight coefficient; 𝑃b
𝑗
 and 𝑃g

𝑗
 are the best positions experienced by the jth 

candidate and best position experienced by all candidate solutions up to ith iteration, 

respectively; 𝑟1 and 𝑟2 are random vectors, chosen from a uniform random distribution 

between 0 and 1. 
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3. ENHANCED COLLIDING BODIES OPTIMIZATION 
 

The ECBO metaheuristic algorithm proposed by Kaveh and Ilchi [17] is an improved 

version of the colliding bodies optimization (CBO) algorithm [10], which uses memory to 

store some historical best solutions to update the position of the candidate solutions in the 

design space. The formulation of this algorithm is based on the basic physical concept of the 

collision of rigid bodies and the change in their position and velocity after the collision. The 

basic steps of ECBO are as follows [17]: 

1. The initial positions of all colliding bodies (CBs) are determined randomly in an m-

dimensional search space as follows: 

 
𝑋𝑖

0 = 𝑋min + 𝑟 × (𝑋max − 𝑋min) , 𝑖 = 1,2,...,𝑛 (3) 

 

in which 0

iX  is the initial solution vector of the ith CB. Here, Xmin and Xmax are respectively 

the lower and upper bounds of design variables; r is a random vector in the interval [0, 1]; n 

is the number of CBs. 

2. The value of mass for each CB is evaluated as follows: 

 

)(

1

i

i
XF

m   (4) 

 

where F(Xi) is the objective function value of the ith CB. 

3. Colliding memory (CM) is utilized to save a number of historically best CB vectors 

and their related masses. Solution vectors in CM, are added to the population and the same 

number of current worst CBs are deleted. Finally, CBs are sorted according to their masses. 

4. CBs are divided into two equal groups: 

(a) Stationary group; 
2

1,2,...,
n

iS    and   (b) Moving group; n...
n

,
n

iM ,,2
2

1
2

  

5. The velocities of stationary and moving bodies before collision are evaluated as 

follows: 

 

0
Si

V  (5) 

MSM iii XXV 

 

(6) 

 

6. The velocities of stationary and moving bodies after collision are evaluated as follows: 
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max

1
t

t


 

(9) 

where ε is the coefficient of restitution. 

7. The new position of each CB is calculated as follows: 

 

SSSS iiii VRXX  new  (10) 

MMMM iiii VRXX  new

 

(11) 

 

where 
Si

R and 
Mi

R are random vectors uniformly distributed in the range of [-1,1]. 

8. A random parameter pro is introduced, specifying whether a component of each CB 

must be changed. For each CB, pro is compared with rni (i=1,…,n), a random number 

uniformly distributed within (0, 1). If rni < pro, one dimension of the ith CB is selected 

randomly and changed.  

9. The optimization process is terminated when a stopping criterion is satisfied. 

 

 

4. HYBRID PSO-ECBO ALGORITHM 
 

This paper proposes a straightforward and new approach for hybridizing two well-known 

metaheuristic algorithms: PSO and ECBO. These algorithms simultaneously explore the 

design space as a parallel implementation strategy. The fundamental steps of the HPE 

metaheuristic algorithm are as follows: 

Step 1. The optimization process starts with generating n random candidate solutions in 

the design space using Eq. (3).  

Step 2. The PSO and ECBO algorithms are simultaneously used to update the position of 

the particles in the design space. In this case, 2×n updated candidate solutions will be in the 

design space. Eqs (1) and (2) are used to generate 𝑋𝑃𝑆𝑂 = {𝑋𝑃𝑆𝑂
1  𝑋𝑃𝑆𝑂

2 … 𝑋𝑃𝑆𝑂
𝑛 } and Eqs (4) 

to (11) are used to generate 𝑋𝐸𝐶𝐵𝑂 = {𝑋𝐸𝐶𝐵𝑂
1  𝑋𝐸𝐶𝐵𝑂

2 … 𝑋𝐸𝐶𝐵𝑂
𝑛 }. 

Step 3. All the updated candidate solutions, 𝑋 = [𝑋𝑃𝑆𝑂 𝑋𝐸𝐶𝐵𝑂], are sorted according to 

their objective function values. The best n particles (first half) are transferred to the next 

generation.  

 

𝑋𝑆 = 𝑠𝑜𝑟𝑡({𝐹(𝑋1)  𝐹(𝑋2) …  𝐹(𝑋2𝑛)}) (12) 

𝑋𝑛𝑒𝑤 = {𝑋𝑆1  𝑋𝑆2 … 𝑋𝑆𝑛} (13) 

 

Step 4. The optimization process will continue until a termination condition (such as 

reaching the maximum number of iterations) is met.  

Step 5. The current best solution is considered the final solution.  

The flowchart of the proposed HPE algorithm is shown in Fig. 1.  
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Figure 1. Flowchart of the proposed HPE algorithm  

 

To investigate the efficiency of theproposed HPE metaheuristic algorithm a number of 

benchmark structural optimization problems are preseted in the next section.  

 

 

5.ILLUSTRATIVE EXAMPLES 
 

Two types of structural optimization problems are presented: steel truss and RC frame 

Generate initial population 
on a random basis

Generate new candidates 
using ECBO

Generate new candidates 
using PSO

Evaluate the objective 
values of all the solutions 
found by PSO and ECBO

Sort the solutions by their 
objective values and 

transfer the first half of the 
population to the next 
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stopping 
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Start

End
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design problems. In the truss design examples, the objective is to minimize the structural 

weight by selecting cross-sectional areas of elements from a discrete set of available 

sections. However, in the case of RC frame problems, the main goal is to minimize the 

construction cost of the frame by selecting cross-sections of beams and columns from 

predefined standard databases.  

 

5.1 Example 1: Planar 10-bar truss example 

Fig. 2 shows the 10-bar truss which is a popular benchmark truss optimization problem. The 

material density and the modulus of elasticity are 0.1 lb/in.3 and 104 ksi, respectively. The 

allowable stress of members and the allowable displacement of all nodes are ±25 ksi and 

±2.0 in., respectively. In addition, the magnitude of vertical load P is 105 lbs. The cross-

sectional areas of the structural members are 10 discrete design variables of this design 

example selected from the following set:  

S = {1.62, 1.80, 1.99, 2.13, 2.38, 2.62, 2.63, 2.88, 2.93, 3.09, 3.13, 3.38, 3.47, 3.55, 3.63, 

3.84, 3.87, 3.88, 4.18, 4.22, 4.49, 4.59, 4.80, 4.97, 5.12, 5.74,7.22, 7.97, 11.50, 13.50, 13.90, 

14.20, 15.50, 16.00, 16.90, 18.80, 19.90, 22.00, 22.90, 26.50, 30.00, 33.50} (in.2). 

 

 
Figure 2. 10-bar truss  

 

In this example, 30 independent optimization runs were performed using different 

algorithms conducting 4000 structural analyses. Table 1 compares the optimization results 

obtained using HPE and those reported in the literature. In addition, the best convergence 

histories of PSO, ECBO and HPE algorithms are compared in Fig. 3 for the 10-bar truss. 

 
Table 1. Optimization results of 10-bar truss 

Design Variables (in.2) HHS [18] SA [19] BB-BC [20] GA [21] HPE  

A1 33.50 33.50 33.50 33.50 33.50 

A2 1.62 1.62 1.62 1.62 1.62 

A3 22.90 22.90 22.90 22.00 22.90 

A4 14.20 14.20 14.20 15.50 14.20 

A5 1.62 1.62 1.62 1.62 1.62 

A6 1.62 1.62 1.62 1.62 1.62 
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A7 7.97 7.97 7.97 14.20 7.97 

A8 22.90 22.90 22.90 19.90 22.90 

A9 22.00 22.00 22.00 19.90 22.00 

A10 1.62 1.62 1.62 2.62 1.62 

Best (lb) 5490.74 5490.74 5490.74 5613.84 5490.74 

Average (lb) 5493.48 N/A 5494.17 N/A 5492.08 

Standard deviation (lb) 10.463 N/A 12.420 N/A 6.752 

Number of analyses 5000 10500 8694 800 4000 

 

 
Figure 3. Convergence histories of the best solutions found by PSO, ECBO, and HPE for 10-bar 

truss  

 

The weights of the best solutions obtained by PSO and ECBO algorithms  are 5531.98 

and 5490.74, respectively. For ECBO, the values of mean and standard deviation of the 

weight of the solutions are 5493.084 and 5.752, respectively. On the other hand, the 

corresponding values for PSO are 5546.48 and 21.873. According to the results, the HPE 

algorithm outperforms other algorithms. 

 

5.2 72-bar truss example 

Fig. 4 shows the 72-bar truss structure considered as the second design example of this 

paper.  
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Figure 4. 72-bar truss 

 

The member groups are: (1) A1–A4, (2) A5–A12, (3) A13–A16, (4) A17–A18, (5) A19–A22, 

(6) A23–A30, (7) A31–A34, (8) A35–A36, (9) A37–A40, (10) A41–A48, (11) A49–A52, (12) A53–

A54, (13) A55–A58, (14) A59–A66 (15), A67–A70, and (16) A71–A72. The material density and 

the modulus of elasticity are 0.1 lb/in.3 and 104 ksi, respectively. There are two independent 

loading conditions given in Table 2. The nodal displacements and element stresses are 

limited to ±0.25 in. and ±25 ksi, respectively. The discrete design variables are selected 

from:  

S={0.111, 0.141, 0.196, 0.25, 0.307, 0.391, 0.442, 0.563, 0.602, 0.766, 0.785, 0.994, 1.0, 

1.228, 1.266, 1.457, 1.563, 1.62, 1.8, 1.99, 2.13, 2.38, 2.62, 2.63, 2.88, 2.93, 3.09, 3.13, 

3.38, 3.47, 3.55, 3.63, 3.84, 3.87, 3.88, 4.18, 4.22, 4.49, 4.59, 4.8, 4.97, 5.12, 5.74, 7.22, 

7.97, 8.53, 9.3, 10.85, 11.5, 13.5, 13.9, 14.2, 15.5, 16.0, 16.9, 18.8, 19.9, 22.0, 22.9, 24.5, 

26.5, 28.0, 30.0, 33.5} (in.2). 
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Table 2. The load cases for the 72-bar spatial truss 

Nodes 
Load Case 1 (kips) Load Case 2 (kips) 

Px  Py Pz Px Py Pz 

17 5.0 5.0 -5.0 0.0 0.0 -5.0 

18 0.0 0.0 0.0 0.0 0.0 -5.0 

19 0.0 0.0 0.0 0.0 0.0 -5.0 

20 0.0 0.0 0.0 0.0 0.0 -5.0 

 
Table 3. Optimization results of 72-bar truss 

Design Variables (in.2) GA [22] DE [23] DHPSACO [24] IDEACO [25] HPE 

1 0.196 2.130 1.800 1.990 1.990 

2 0.602 0.442 0.442 0.563 0.563 

3 0.307 0.111 0.141 0.111 0.111 

4 0.766 0.111 0.111 0.111 0.111 

5 0.391 1.457 1.228 1.228 1.228 

6 0.391 0.563 0.563 0.442 0.442 

7 0.141 0.111 0.111 0.111 0.111 

8 0.111 0.111 0.111 0.111 0.111 

9 1.800 0.442 0.563 0.563 0.563 

10 0.602 0.563 0.563 0.563 0.563 

11 0.141 0.111 0.111 0.111 0.111 

12 0.307 0.111 0.250 0.111 0.111 

13 1.563 0.196 0.196 0.196 0.196 

14 0.766 0.563 0.563 0.563 0.563 

15 0.141 0.307 0.442 0.391 0.391 

16 0.111 0.563 0.563 0.563 0.563 

Best (lb) 427.203 391.329 393.380 389.33 389.33 

Average (lb) - - - 390.31 389.73 

Standard deviation (lb) - - - 1.010 0.824 

Number of analyses - - - 10000 8000 

 

In this example, 30 independent optimization runs were performed using different 

algorithms conducting 8000 structural analyses. The optimization results obtained using 

HPE and other algorithms are compared in Table 3. The best convergence histories of PSO, 

ECBO and HPE algorithms are compared  in Fig. 5. 

For ECBO, the values of the best, mean, and standard deviation of the weights of the 

optimal solutions are 393.380, 402.524, and 1.082, respectively. On the other hand, the 

corresponding values for PSO are 434.48, 446.522, and 3.624. The results show the 

superiority of the HPE algorithm over other algorithms. 
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Figure 5. Convergence histories of the best solution found by PSO, ECBO, and HPE for 72-bar 

truss 

 
 

5.3 200-bar truss example 
A 200-bar truss optimization problem is considered as the third illustrative example of this 

paper. Fig. 6 shows the geometry and member grouping details of this structure. The 

material density and the modulus of elasticity are 0.283 lb/in.3 and 3×104 ksi, respectively. 

The allowable stress of members is ±10 ksi. There are three loading conditions as follows:  

Loading Condition 1: 1 kip load forces act in positive x direction at nodes 1, 6, 15, 20, 

29, 34, 43, 48, 57, 62 and 71; Loading Condition 2: 10 kips forces act negative y direction at 

nodes 1, 2, 3, 4, 5, 6, 8, 10, 12, 14, 15, 16, 17, 18, 19, 20, 22, 24, 26, 28, 29, 30, 31, 32, 33, 

34, 36, 38, 40, 42, 43, 44, 45, 46, 47, 48, 50, 52, 54, 56, 57, 58, 59, 60, 62, 64, 66, 68, 70, 

71, 72, 73, 74, and 75; Loading Condition 3: combining loading conditions 1 and 2.  

Cross-sectional areas of members are selected from the following set: 

S={0.100, 0.347, 0.440, 0.539, 0.954, 1.081, 1.174, 1.133, 1.488, 1.764, 2.142, 2.697, 2.800, 

3.131, 3.565, 3.813, 4.805, 5.952, 6.572, 7.192, 8.525, 9.300, 10.850, 13.330, 14.290, 

17.170, 19.180, 23.680, 28.080, 33.700} (in.2).  

In this example, 30 independent optimization runs were performed using different 

algorithms conducting 12000 structural analyses. The optimization results obtained using 

HPE and other algorithms are compared in Table 4. In Fig. 7, the best convergence histories 

of PSO, ECBO and HPE algorithms are compared. 

For ECBO, the values of the best, mean, and standard deviation of the weights of the 

optimal solutions are 27789.097, 28487.524, and 922.082, respectively. On the other hand, 

the corresponding values for PSO are 28075.4, 29427.522, and 1232.624. The results show 

the superiority of the HPE algorithm over other algorithms. 
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Figure 6. 200-bar truss 

 

 [
 D

O
I:

 1
0.

22
06

8/
ijo

ce
.2

02
4.

14
.1

.5
72

 ]
 

 [
 D

ow
nl

oa
de

d 
fr

om
 ic

t-
si

s.
iu

st
.a

c.
ir

 o
n 

20
25

-1
0-

25
 ]

 

                            11 / 15

http://dx.doi.org/10.22068/ijoce.2024.14.1.572
https://ict-sis.iust.ac.ir/ijoce/article-1-572-fa.html


A. Yadbayza-Moghaddam, S. Gholizadeh 

 

12 

Table 5. Optimization results of 200-bar truss 

Design Variables (in.2) IMV [26] mSOS [27] HPE 

A1 0.1 0.1 0.1 

A2 0.954 0.954 0.954 

A3 0.44 0.44 0.44 

A4 0.1 0.1 0.1 

A5 2.142 2.142 2.142 

A6 0.347 0.347 0.347 

A7 0.1 0.1 0.1 

A8 3.131 3.131 3.131 

A9 0.1 0.1 0.1 

A10 4.805 4.805 4.805 

A11 0.44 0.44 0.44 

A12 0.347 0.44 0.347 

A13 5.952 5.952 5.952 

A14 0.1 0.1 0.1 

A15 6.572 6.572 6.572 

A16 0.954 0.954 0.954 

A17 0.1 0.347 0.1 

A18 8.525 8.525 8.525 

A19 0.44 0.1 0.44 

A20 9.3 9.3 9.3 

A21 0.954 0.954 0.954 

A22 0.1 1.174 0.1 

A23 13.33 13.33 13.33 

A24 0.1 0.44 0.1 

A25 13.33 13.33 13.33 

A26 0.954 2.142 0.954 

A27 5.952 3.813 5.952 

A28 10.85 8.525 10.85 

A29 14.29 17.17 14.29 

Best (lb) 27281.35 27544.191 27281.35 

Average (lb) 28771.426 27629.818 27963.32 

Standard deviation (lb) 624.026 90.254 603.67 

Number of analyses 15000 21675 12000 

 

 [
 D

O
I:

 1
0.

22
06

8/
ijo

ce
.2

02
4.

14
.1

.5
72

 ]
 

 [
 D

ow
nl

oa
de

d 
fr

om
 ic

t-
si

s.
iu

st
.a

c.
ir

 o
n 

20
25

-1
0-

25
 ]

 

                            12 / 15

http://dx.doi.org/10.22068/ijoce.2024.14.1.572
https://ict-sis.iust.ac.ir/ijoce/article-1-572-fa.html


A NEW HYBRID METAHEURISTIC ALGORITHM FOR SIZE OPTIMIZATION … 

 

13 

 
Figure 7. Convergence histories of the best solution found by PSO, ECBO, and HPE for 200-bar 

truss 

 

 

6. CONCLUSIONS 
 

This paper proposes a hybrid PSO-ECBO (HPE) algorithm for dealing with discrete 

structural optimization problems. The HPE strategy combines PSO and ECBO to efficiently 

explore the design space. It starts by generating random candidate solutions in the design 

space using PSO and ECBO. The best particles are directly transferred to the next generation 

after sorting updated candidate solutions according to their objective values. This process 

continues until a termination condition is satisfied, and the current best solution is 

considered the final solution.  

In order to illustrate the efficiency of the proposed HPE, three well-known discrete 

benchmark truss optimization problems of 10-, 72-, and 200-bar truss structures are 

presented. This paper compares the numerical results of HPE in 30 independent runs with 

those of other metaheuristics including PSO and ECBO. The numerical results indicate that 

in all the examples, the performance of the proposed HPE is better than the other algorithms. 
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